Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Cell Insight ; 3(3): 100161, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38646547

RESUMO

Cell polarity is crucial for gastric mucosal barrier integrity and mainly regulated by polarity-regulating kinase partitioning-defective 1b (Par1b). During infection, the carcinogen Helicobacter pylori hijacks Par1b via the bacterial oncoprotein CagA leading to loss of cell polarity, but the precise molecular mechanism is not fully clear. Here we discovered a novel function of the actin-binding protein cortactin in regulating Par1b, which forms a complex with cortactin and the tight junction protein zona occludens-1 (ZO-1). We found that serine phosphorylation at S405/418 and the SH3 domain of cortactin are important for its interaction with both Par1b and ZO-1. Cortactin knockout cells displayed disturbed Par1b cellular localization and exhibited morphological abnormalities that largely compromised transepithelial electrical resistance, epithelial cell polarity, and apical microvilli. H. pylori infection promoted cortactin/Par1b/ZO-1 abnormal interactions in the tight junctions in a CagA-dependent manner. Infection of human gastric organoid-derived mucosoids supported these observations. We therefore hypothesize that CagA disrupts gastric epithelial cell polarity by hijacking cortactin, and thus Par1b and ZO-1, suggesting a new signaling pathway for the development of gastric cancer by Helicobacter.

2.
Trends Microbiol ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38485609

RESUMO

Several single-nucleotide polymorphisms (SNPs) in human chromosomes are known to predispose to cancer. However, cancer-associated SNPs in bacterial pathogens were unknown until discovered in the stomach pathogen Helicobacter pylori. Those include an alanine-threonine polymorphism in the EPIYA-B phosphorylation motif of the injected effector protein CagA that affects cancer risk by modifying inflammatory responses and loss of host cell polarity. A serine-to-leucine change in serine protease HtrA is associated with boosted proteolytic cleavage of epithelial junction proteins and introduction of DNA double-strand breaks (DSBs) in host chromosomes, which co-operatively elicit malignant alterations. In addition, H. pylori genome-wide association studies (GWAS) identified several other SNPs potentially associated with increased gastric cancer (GC) risk. Here we discuss the clinical importance, evolutionary origin, and functional advantage of the H. pylori SNPs. These exciting new data highlight cancer-associated SNPs in bacteria, which should be explored in more detail in future studies.

3.
Cells ; 13(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38334616

RESUMO

Fundamental functions of the intestinal epithelium include the digestion of food, absorption of nutrients, and its ability to act as the first barrier against intruding microbes. Campylobacter jejuni is a major zoonotic pathogen accounting for a substantial portion of bacterial foodborne illnesses. The germ colonizes the intestines of birds and is mainly transmitted to humans through the consumption of contaminated poultry meat. In the human gastrointestinal tract, the bacterium triggers campylobacteriosis that can progress to serious secondary disorders, including reactive arthritis, inflammatory bowel disease and Guillain-Barré syndrome. We recently discovered that C. jejuni serine protease HtrA disrupts intestinal epithelial barrier functions via cleavage of the tight and adherens junction components occludin, claudin-8 and E-cadherin. However, it is unknown whether epithelial damage is mediated by the secreted soluble enzyme, by HtrA contained in shed outer-membrane vesicles (OMVs) or by another mechanism that has yet to be identified. In the present study, we investigated whether soluble recombinant HtrA and/or purified OMVs induce junctional damage to polarized intestinal epithelial cells compared to live C. jejuni bacteria. By using electron and confocal immunofluorescence microscopy, we show that HtrA-expressing C. jejuni bacteria trigger efficient junctional cell damage, but not soluble purified HtrA or HtrA-containing OMVs, not even at high concentrations far exceeding physiological levels. Instead, we found that only bacteria with active protein biosynthesis effectively cleave junctional proteins, which is followed by paracellular transmigration of C. jejuni through the epithelial cell layer. These findings shed new light on the pathogenic activities of HtrA and virulence strategies of C. jejuni.


Assuntos
Campylobacter jejuni , Humanos , Campylobacter jejuni/metabolismo , Serina Proteases/metabolismo , Serina Endopeptidases/metabolismo , Bactérias/metabolismo , Células Epiteliais/metabolismo , Junções Intercelulares/metabolismo
4.
Cell Host Microbe ; 31(8): 1345-1358.e6, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37490912

RESUMO

Single-nucleotide polymorphisms (SNPs) in various human genes are key factors in carcinogenesis. However, whether SNPs in bacterial pathogens are similarly crucial in cancer development is unknown. Here, we analyzed 1,043 genomes of the stomach pathogen Helicobacter pylori and pinpointed a SNP in the serine protease HtrA (position serine/leucine 171) that significantly correlates with gastric cancer. Our functional studies reveal that the 171S-to-171L mutation triggers HtrA trimer formation and enhances proteolytic activity and cleavage of epithelial junction proteins occludin and tumor-suppressor E-cadherin. 171L-type HtrA, but not 171S-HtrA-possessing H. pylori, inflicts severe epithelial damage, enhances injection of oncoprotein CagA into epithelial cells, increases NF-κB-mediated inflammation and cell proliferation through nuclear accumulation of ß-catenin, and promotes host DNA double-strand breaks, collectively triggering malignant changes. These findings highlight the 171S/L HtrA mutation as a unique bacterial cancer-associated SNP and as a potential biomarker for risk predictions in H. pylori infections.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Polimorfismo de Nucleotídeo Único , Neoplasias Gástricas/genética , Neoplasias Gástricas/microbiologia , Serina Proteases/genética , Serina Proteases/metabolismo , Infecções por Helicobacter/complicações , Infecções por Helicobacter/genética , Infecções por Helicobacter/metabolismo , Antígenos de Bactérias/metabolismo
5.
Med Microbiol Immunol ; 212(3): 241-252, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37183214

RESUMO

The human pathogen Helicobacter pylori is a major risk factor for gastric disease development. Serine protease HtrA is an important bacterial virulence factor that cleaves the cell junction proteins occludin, claudin-8 and E-cadherin, which causes gastric tissue damage. Using casein zymography, we discovered that HtrA trimer stability varies in clinical H. pylori strains. Subsequent sequence analyses revealed that HtrA trimer stability correlated with the presence of leucine or serine residue at position 171. The importance of these amino acids in determining trimer stability was confirmed by leucine-to-serine swapping experiments using isogenic H. pylori mutant strains as well as recombinant HtrA proteins. In addition, this sequence position displays a high sequence variability among various bacterial species, but generally exhibits a preference for hydrophilic amino acids. This natural L/S171 polymorphism in H. pylori may affect the protease activity of HtrA during infection, which could be of clinical importance and may determine gastric disease development.


Assuntos
Helicobacter pylori , Humanos , Proteínas de Bactérias/metabolismo , Leucina/genética , Leucina/metabolismo , Serina Proteases/genética , Serina Proteases/metabolismo , Proteínas Recombinantes/genética , Mutação , Serina/genética , Serina/metabolismo
6.
Trends Microbiol ; 31(9): 903-915, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37012092

RESUMO

Helicobacter pylori is a paradigm of chronic bacterial infection and is associated with peptic ulceration and malignancies. H. pylori uses specific masking mechanisms to avoid canonical ligands from activating Toll-like receptors (TLRs), such as lipopolysaccharide (LPS) modification and specific flagellin sequences that are not detected by TLR4 and TLR5, respectively. Thus, it was believed for a long time that H. pylori evades TLR recognition as a crucial strategy for immune escape and bacterial persistence. However, recent data indicate that multiple TLRs are activated by H. pylori and play a role in the pathology. Remarkably, H. pylori LPS, modified through changes in acylation and phosphorylation, is mainly sensed by other TLRs (TLR2 and TLR10) and induces both pro- and anti-inflammatory responses. In addition, two structural components of the cag pathogenicity island-encoded type IV secretion system (T4SS), CagL and CagY, were shown to contain TLR5-activating domains. These domains stimulate TLR5 and enhance immunity, while LPS-driven TLR10 signaling predominantly activates anti-inflammatory reactions. Here, we discuss the specific roles of these TLRs and masking mechanisms during infection. Masking of typical TLR ligands combined with evolutionary shifting to other TLRs is unique for H. pylori and has not yet been described for any other species in the bacterial kingdom. Finally, we highlight the unmasked T4SS-driven activation of TLR9 by H. pylori, which mainly triggers anti-inflammatory responses.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Receptor 5 Toll-Like , Receptor 4 Toll-Like , Lipopolissacarídeos , Ligantes , Receptores Toll-Like , Inflamação
7.
Biomolecules ; 13(2)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36830692

RESUMO

Infection with the main human food-borne pathogen Campylobacter jejuni causes campylobacteriosis that accounts for a substantial percentage of gastrointestinal infections. The disease usually manifests as diarrhea that lasts for up to two weeks. C. jejuni possesses an array of peptidases and proteases that are critical for its lifestyle and pathogenesis. These include serine proteases Cj1365c, Cj0511 and HtrA; AAA+ group proteases ClpP, Lon and FtsH; and zinc-dependent protease PqqE, proline aminopeptidase PepP, oligopeptidase PepF and peptidase C26. Here, we review the numerous critical roles of these peptide bond-dissolving enzymes in cellular processes of C. jejuni that include protein quality control; protein transport across the inner and outer membranes into the periplasm, cell surface or extracellular space; acquisition of amino acids and biofilm formation and dispersal. In addition, we highlight their role as virulence factors that inflict intestinal tissue damage by promoting cell invasion and mediating cleavage of crucial host cell factors such as epithelial cell junction proteins. Furthermore, we reconstruct the evolution of these proteases in 34 species of the Campylobacter genus. Finally, we discuss to what extent C. jejuni proteases have initiated the search for inhibitor compounds as prospective novel anti-bacterial therapies.


Assuntos
Campylobacter jejuni , Humanos , Campylobacter jejuni/metabolismo , Estudos Prospectivos , Serina Proteases/metabolismo , Serina Endopeptidases/metabolismo , Intestinos/microbiologia
8.
Curr Top Microbiol Immunol ; 444: 185-206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38231219

RESUMO

Gastric cancer is a very serious and deadly disease worldwide with about one million new cases every year. Most gastric cancer subtypes are associated with genetic and epigenetic aberrations caused by chromosome instability, microsatellite instability or Epstein-Barr virus infection. Another risk factor is an infection with Helicobacter pylori, which also triggers severe alterations in the host genome. This pathogen expresses an extraordinary repertoire of virulence determinants that take over control of important host cell signaling functions. In fact, H. pylori is a paradigm of persistent infection, chronic inflammation and cellular destruction. In particular, H. pylori profoundly induces chromosomal DNA damage by introducing double-strand breaks (DSBs) followed by genomic instability. DSBs appear in response to oxidative stress and pro-inflammatory transcription during the S-phase of the epithelial cell cycle, which mainly depends on the presence of the bacterial cag pathogenicity island (cagPAI)-encoded type IV secretion system (T4SS). This scenario is closely connected with the T4SS-mediated injection of ADP-glycero-ß-D-manno-heptose (ADP-heptose) and oncoprotein CagA. While ADP-heptose links transcription factor NF-κB-induced innate immune signaling with RNA-loop-mediated DNA replication stress and introduction of DSBs, intracellular CagA targets the tumor suppressor BRCA1. The latter scenario promotes BRCAness, a disease characterized by the deficiency of effective DSB repair. In addition, genetic studies of patients demonstrated the presence of gastric cancer-associated single nucleotide polymorphisms (SNPs) in immune-regulatory and other genes as well as specific pathogenic germline variants in several crucial genes involved in homologous recombination and DNA repair, all of which are connected to H. pylori infection. Here we review the molecular mechanisms leading to chromosomal DNA damage and specific genetic aberrations in the presence or absence of H. pylori infection, and discuss their importance in gastric carcinogenesis.


Assuntos
Infecções por Vírus Epstein-Barr , Helicobacter pylori , Neoplasias Gástricas , Humanos , DNA , Dano ao DNA , Helicobacter pylori/genética , Heptoses , Herpesvirus Humano 4 , Neoplasias Gástricas/genética
9.
Mol Microbiol ; 118(6): 623-636, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36396951

RESUMO

Pathogenic bacteria possess a great potential of causing infectious diseases and represent a serious threat to human and animal health. Understanding the molecular basis of infection development can provide new valuable strategies for disease prevention and better control. In host-pathogen interactions, actin-cytoskeletal dynamics play a crucial role in the successful adherence, invasion, and intracellular motility of many intruding microbial pathogens. Cortactin, a major cellular factor that promotes actin polymerization and other functions, appears as a central regulator of host-pathogen interactions and different human diseases including cancer development. Various important microbes have been reported to hijack cortactin signaling during infection. The primary regulation of cortactin appears to proceed via serine and/or tyrosine phosphorylation events by upstream kinases, acetylation, and interaction with various other host proteins, including the Arp2/3 complex, filamentous actin, the actin nucleation promoting factor N-WASP, focal adhesion kinase FAK, the large GTPase dynamin-2, the guanine nucleotide exchange factor Vav2, and the actin-stabilizing protein CD2AP. Given that many signaling factors can affect cortactin activities, several microbes target certain unique pathways, while also sharing some common features. Here we review our current knowledge of the hallmarks of cortactin as a major target for eminent Gram-negative and Gram-positive bacterial pathogens in humans.


Assuntos
Actinas , Cortactina , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Cortactina/metabolismo , Citoesqueleto/metabolismo , Fosforilação
10.
Biomolecules ; 12(4)2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35454110

RESUMO

Campylobacter jejuni represents an eminent zoonotic germ responsible for foodborne infections causing campylobacteriosis. In addition, infections with C. jejuni constitute a risk factor for the occurrence of inflammatory bowel disease (IBD). In the latter case, patients show inflammatory reactions not only against C. jejuni, but also against the non-infectious microbiota. However, the involved mechanisms and molecular basis are still largely unclear. We recently reported that C. jejuni breaches the intestinal epithelial barrier by secretion of serine protease HtrA (high temperature requirement A), which cleaves several major tight and adherens junction proteins. In the present study, we aimed to study if HtrA-expressing C. jejuni may also trigger the transepithelial migration of non-pathogenic gastrointestinal microbiota. Using confocal immunofluorescence and scanning electron microscopy, we demonstrate that C. jejuni wild-type (wt) as well as the isogenic ∆htrA mutant bind to the surface of polarized intestinal Caco-2 epithelial cells, but do not invade them at the apical side. Instead, C. jejuni wt, but not ∆htrA mutant, disrupt the cellular junctions and transmigrate using the paracellular route between neighboring cells. Using transwell filter systems, we then co-incubated the cells with C. jejuni and non-invasive microbiota strains, either Escherichia coli or Lactococcus lactis. Interestingly, C. jejuni wt, but not ∆htrA mutant, induced the efficient transmigration of these microbiota bacteria into the basal compartment. Thus, infection of the intestinal epithelium with C. jejuni causes local opening of cellular junctions and paracellular translocation in an HtrA-dependent manner, which paves the way for transmigration of microbiota that is otherwise non-invasive. Taken together, these findings may have impacts on various Campylobacter-associated diseases such as IBD, which are discussed here.


Assuntos
Campylobacter jejuni , Doenças Inflamatórias Intestinais , Microbiota , Células CACO-2 , Campylobacter jejuni/metabolismo , Humanos , Serina Endopeptidases/metabolismo , Serina Proteases/metabolismo
11.
Curr Microbiol ; 79(4): 121, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35239059

RESUMO

The genomes of the gastric bacterial pathogen Helicobacter pylori harbor multiple type-IV secretion systems (T4SSs). Here we analyzed components of three T4SSs, the cytotoxin-associated genes (cag) T4SS, TFS3 and TFS4. The cag T4SS delivers the effector protein CagA and the LPS-metabolite ADP-heptose into gastric epithelial cells, which plays a pivotal role in chronic infection and development of gastric disease. In addition, the cag T4SS was reported to facilitate conjugative transport of chromosomal bacterial DNA into the host cell cytoplasm, where injected DNA activates intracellular toll-like receptor 9 (TLR9) and triggers anti-inflammatory signaling. Canonical DNA-delivering T4SSs in a variety of bacteria are composed of 11 VirB proteins (VirB1-11) which assemble and engage VirD2 relaxase and VirD4 coupling proteins that mediate DNA processing and guiding of the covalently bound DNA through the T4SS channel. Nevertheless, the role of the latter components in H. pylori is unclear. Here, we utilized isogenic knockout mutants of various virB (virB9 and virB10, corresponding to cagX and cagY), virD2 (rlx1 and rlx2), virD4 (cag5, traG1/2) and xerD recombinase genes in H. pylori laboratory strain P12 and studied their role in TLR9 activation by reporter assays. While inactivation of the structural cag T4SS genes cagX and cagY abolished TLR9 activation, the deletion of rlx1, rlx2, cag5, traG or xerD genes had no effect. The latter mutants activated TLR9 similar to wild-type bacteria, suggesting the presence of a unique non-canonical T4SS-dependent mechanism of TLR9 stimulation by H. pylori that is not mediated by VirD2, VirD4 and XerD proteins. These findings were confirmed by the analysis of TLR9 activation by H. pylori strains of worldwide origin that possess different sets of T4SS genes. The exact mechanism of TLR9 activation should be explored in future studies.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citotoxinas/metabolismo , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Humanos , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo
12.
Eur J Microbiol Immunol (Bp) ; 11(4): 95-103, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35060920

RESUMO

Transcription factors of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB) family control important signaling pathways in the regulation of the host innate immune system. Various bacterial pathogens in the human gastrointestinal tract induce NF-ĸB activity and provoke pro-inflammatory signaling events in infected epithelial cells. NF-ĸB activation requires the phosphorylation-dependent proteolysis of inhibitor of ĸB (IĸB) molecules including the NF-ĸB precursors through ubiquitin-mediated proteolysis. The canonical NF-ĸB pathway merges on IĸB kinases (IKKs), which are required for signal transduction. Using CRISPR-Cas9 technology, secreted embryonic alkaline phosphatase (SEAP) reporter assays and cytokine enzyme-linked immunosorbent assay (ELISA), we demonstrate that the actin-binding protein cortactin is involved in NF-ĸB activation and subsequent interleukin-8 (IL-8) production upon infection by Helicobacter pylori, Salmonella enterica and Pseudomonas aeruginosa. Our data indicate that cortactin is needed to efficiently activate the c-Sarcoma (Src) kinase, which can positively stimulate NF-ĸB during infection. In contrast, cortactin is not involved in activation of NF-ĸB and IL-8 expression upon infection with Campylobacter species C. jejuni, C. coli or C. consisus, suggesting that Campylobacter species pluralis (spp.) induce a different signaling pathway upstream of cortactin to trigger the innate immune response.

13.
Cancers (Basel) ; 13(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34439396

RESUMO

The pathogen Helicobacter pylori is the first reported bacterial type-1 carcinogen playing a role in the development of human malignancies, including gastric adenocarcinoma. Cancer cell motility is an important process in this scenario, however, the molecular mechanisms are still not fully understood. Here, we demonstrate that H. pylori subverts the actin-binding protein cortactin through its type-IV secretion system and injected oncoprotein CagA, e.g., by inducing tyrosine phosphorylation of cortactin at Y-470, which triggers gastric epithelial cell scattering and motility. During infection of AGS cells, cortactin was discovered to undergo tyrosine dephosphorylation at residues Y-421 and Y-486, which is mediated through inactivation of Src kinase. However, H. pylori also profoundly activates tyrosine kinase Abl, which simultaneously phosphorylates cortactin at Y-470. Phosphorylated cortactin interacts with the SH2-domain of Vav2, a guanine nucleotide exchange factor for the Rho-family of GTPases. The cortactin/Vav2 complex then stimulates a previously unrecognized activation cascade including the small GTPase Rac1, to effect actin rearrangements and cell scattering. We hypothesize that injected CagA targets cortactin to locally open the gastric epithelium in order to get access to certain nutrients. This may disturb the cellular barrier functions, likely contributing to the induction of cell motility, which is important in gastric cancer development.

14.
Cell Microbiol ; 23(10): e13376, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34197673

RESUMO

Cortactin represents an important actin-binding factor, which controls actin-cytoskeletal remodelling in host cells. In this way, cortactin has been shown to exhibit crucial functions both for cell movement and tumour cell invasion. In addition, the cortactin gene cttn is amplified in various cancer types of humans. Helicobacter pylori is the causative agent of multiple gastric diseases and represents a significant risk factor for the development of gastric adenocarcinoma. It has been repeatedly shown that H. pylori manipulates cancer-related signal transduction events in infected gastric epithelial cells such as the phosphorylation status of cortactin. In fact, H. pylori modifies the activity of cortactin's binding partners to stimulate changes in the actin-cytoskeleton, cell adhesion and motility. Here we show that H. pylori infection of cultured AGS and Caco-2 cells for 24-48 hr leads to the overexpression of cortactin by 2-3 fold at the protein level. We demonstrate that this activity requires the integrity of the type IV secretion system (T4SS) encoded by the cag pathogenicity island (cagPAI) as well as the translocated effector protein CagA. We further show that ectopic expression of CagA is sufficient to stimulate cortactin overexpression. Furthermore, phosphorylation of CagA at the EPIYA-repeat region is not required, suggesting that this CagA activity proceeds in a phosphorylation-independent fashion. Inhibitor studies further demonstrate that the involved signalling pathway comprises the mitogen-activated protein kinase JNK (c-Jun N-terminal kinase), but not ERK1/2 or p38. Taken together, using H. pylori as a model system, this study discovered a previously unrecognised cortactin activation cascade by a microbial pathogen. We suggest that H. pylori targets cortactin to manipulate the cellular architecture and epithelial barrier functions that can impact gastric cancer development. TAKE AWAYS: Helicobacter pylori infection induces overexpression of cortactin at the protein level Cortactin upregulation requires the T4SS and effector protein CagA Ectopic expression of CagA is sufficient to stimulate cortactin overexpression Overexpression of cortactin proceeds CagA phosphorylation-independent The involved host cell signalling pathway comprises the MAP kinase JNK.


Assuntos
Cortactina/metabolismo , Infecções por Helicobacter , Helicobacter pylori , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células CACO-2 , Cortactina/genética , Células Epiteliais/metabolismo , Helicobacter pylori/metabolismo , Humanos , Fosforilação , Sistemas de Secreção Tipo IV
15.
Int J Mol Sci ; 22(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205064

RESUMO

Cortactin is a well-known regulatory protein of the host actin cytoskeleton and represents an attractive target of microbial pathogens like Helicobacter pylori. H. pylori manipulates cortactin's phosphorylation status by type-IV secretion-dependent injection of its virulence protein CagA. Multiple host tyrosine kinases, like FAK, Src, and Abl, are activated during infection, but the pathway(s) involved is (are) not yet fully established. Among them, Src and Abl target CagA and stimulate tyrosine phosphorylation of the latter at its EPIYA-motifs. To investigate the role of cortactin in more detail, we generated a CRISPR/Cas9 knockout of cortactin in AGS gastric epithelial cells. Surprisingly, we found that FAK, Src, and Abl kinase activities were dramatically downregulated associated with widely diminished CagA phosphorylation in cortactin knockout cells compared to the parental control. Together, we report here a yet unrecognized cortactin-dependent signaling pathway involving FAK, Src, and Abl activation, and controlling efficient phosphorylation of injected CagA during infection. Thus, the cortactin status could serve as a potential new biomarker of gastric cancer development.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Quinase 1 de Adesão Focal/genética , Infecções por Helicobacter/genética , Helicobacter pylori/genética , Proteínas Oncogênicas v-abl/genética , Regulação Bacteriana da Expressão Gênica/genética , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/patogenicidade , Interações Hospedeiro-Patógeno/genética , Humanos , Fosforilação/genética , Quinases da Família src/genética
16.
Curr Top Microbiol Immunol ; 431: 169-202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33620652

RESUMO

Campylobacter jejuni and Campylobacter coli can be frequently isolated from poultry and poultry-derived products, and in combination these two species cause a large portion of human bacterial gastroenteritis cases. While birds are typically colonized by these Campylobacter species without clinical symptoms, in humans they cause (foodborne) infections at high frequencies, estimated to cost billions of dollars worldwide every year. The clinical outcome of Campylobacter infections comprises malaise, diarrhea, abdominal pain and fever. Symptoms may continue for up to two weeks and are generally self-limiting, though occasionally the disease can be more severe or result in post-infection sequelae. The virulence properties of these pathogens have been best-characterized for C. jejuni, and their actions are reviewed here. Various virulence-associated bacterial determinants include the flagellum, numerous flagellar secreted factors, protein adhesins, cytolethal distending toxin (CDT), lipooligosaccharide (LOS), serine protease HtrA and others. These factors are involved in several pathogenicity-linked properties that can be divided into bacterial chemotaxis, motility, attachment, invasion, survival, cellular transmigration and spread to deeper tissue. All of these steps require intimate interactions between bacteria and host cells (including immune cells), enabled by the collection of bacterial and host factors that have already been identified. The assortment of pathogenicity-associated factors now recognized for C. jejuni, their function and the proposed host cell factors that are involved in crucial steps leading to disease are discussed in detail.


Assuntos
Campylobacter coli , Campylobacter jejuni , Campylobacter , Campylobacter jejuni/genética , Interações Hospedeiro-Patógeno , Humanos , Fatores de Virulência/genética
17.
Pathogens ; 11(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35055951

RESUMO

Cortactin is an actin-binding protein and actin-nucleation promoting factor regulating cytoskeletal rearrangements in eukaryotes. Helicobacter pylori is a gastric pathogen that exploits cortactin to its own benefit. During infection of gastric epithelial cells, H. pylori hijacks multiple cellular signaling pathways, leading to the disruption of key cell functions. Two bacterial virulence factors play important roles in this scenario, the vacuolating cytotoxin VacA and the translocated effector protein CagA of the cag type IV secretion system (T4SS). Specifically, by overruling the phosphorylation status of cortactin, H. pylori alternates the activity of molecular interaction partners of this important protein, thereby manipulating the performance of cytoskeletal rearrangements, endosomal trafficking and cell movement. Based on shRNA knockdown and other studies, it was previously reported that VacA utilizes cortactin for its cellular uptake, intracellular travel and induction of apoptosis by a mitochondria-dependent mechanism, while CagA induces cell scattering, motility and elongation. To investigate the role of cortactin in these phenotypes in more detail, we produced a complete knockout mutant of cortactin in the gastric adenocarcinoma cell line AGS by CRISPR-Cas9. These cells were infected with H. pylori wild-type or various isogenic mutant strains. Unexpectedly, cortactin deficiency did not prevent the uptake and formation of VacA-dependent vacuoles, nor the induction of apoptosis by internalized VacA, while the induction of T4SS- and CagA-dependent AGS cell movement and elongation were strongly reduced. Thus, we provide evidence that cortactin is required for the function of internalized CagA, but not VacA.

18.
Front Cell Infect Microbiol ; 10: 590186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33364202

RESUMO

Campylobacter jejuni express the high temperature requirement protein A (HtrA), a secreted serine protease, which is implicated in virulence properties of the pathogen. Previous studies have shown that C. jejuni HtrA can cleave the epithelial transmembrane proteins occludin and E-cadherin in the tight and adherens junctions, respectively. In the present report, we studied the interaction of HtrA with another human tight junction protein, claudin-8. Confocal immunofluorescence experiments have shown that C. jejuni infection of the intestinal polarized epithelial cells in vitro leads to a relocation of claudin-8. Wild-type C. jejuni induced the downregulation of claudin-8 signals in the tight junctions and an accumulation of claudin-8 agglomerates in the cytoplasm, which were not seen during infection with isogenic ΔhtrA knockout deletion or protease-inactive S197A point mutants. Western blotting of protein samples from infected vs. uninfected cells revealed that an 18-kDa carboxy-terminal fragment is cleaved-off from the 26-kDa full-length claudin-8 protein, but not during infection with the isogenic ΔhtrA mutant. These results were confirmed by in vitro cleavage assays using the purified recombinant C. jejuni HtrA and human claudin-8 proteins. Recombinant HtrA cleaved purified claudin-8 in vitro giving rise to the same 18-kDa sized carboxy-terminal cleavage product. Mapping studies revealed that HtrA cleavage occurs in the first extracellular loop of claudin-8. Three-dimensional modeling of the claudin-8 structure identified an exposed HtrA cleavage site between the amino acids alanine 58 and asparagine 59, which is in well agreement with the mapping studies. Taken together, HtrA operates as a secreted virulence factor targeting multiple proteins both in the tight and adherens junctions. This strategy may help the bacteria to open the cell-to-cell junctions, and to transmigrate across the intestinal epithelium by a paracellular mechanism and establish an acute infection.


Assuntos
Campylobacter jejuni , Claudinas , Humanos , Ocludina , Serina Endopeptidases , Serina Proteases/genética , Proteína Estafilocócica A , Junções Íntimas
19.
Cell Rep ; 32(11): 108159, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937132

RESUMO

Helicobacter pylori (Hp) is an important human pathogen associated with gastric inflammation and neoplasia. It is commonly believed that this bacterium avoids major immune recognition by Toll-like receptors (TLRs) because of low intrinsic activity of its flagellin and lipopolysaccharides (LPS). In particular, TLR5 specifically detects flagellins in various bacterial pathogens, while Hp evolved mutations in flagellin to evade detection through TLR5. Cancerogenic Hp strains encode a type IV secretion system (T4SS). The T4SS core component and pilus-associated protein CagY, a large VirB10 ortholog, drives effector molecule translocation. Here, we identify CagY as a flagellin-independent TLR5 agonist. We detect five TLR5 interaction sites, promoting binding of CagY-positive Hp to TLR5-expressing cells, TLR5 stimulation, and intracellular signal transduction. Consequently, CagY constitutes a remarkable VirB10 member detected by TLR5, driving crucial innate immune responses by this human pathogen.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Helicobacter pylori/metabolismo , Sequências Repetitivas de Aminoácidos , Receptor 5 Toll-Like/metabolismo , Animais , Sítios de Ligação , Sequência Conservada , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Células HEK293 , Humanos , Modelos Biológicos , Mutagênese/genética , Peptídeos/metabolismo , Domínios Proteicos , Gastropatias/microbiologia , Gastropatias/patologia , Relação Estrutura-Atividade , Receptor 5 Toll-Like/agonistas , Receptor 5 Toll-Like/genética , Regulação para Cima/genética , Peixe-Zebra
20.
Front Microbiol ; 11: 1592, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754140

RESUMO

The pathogenic bacterium Helicobacter pylori is genetically highly diverse and a major risk factor for the development of peptic ulcer disease and gastric adenocarcinoma in humans. During evolution, H. pylori has acquired multiple type IV secretion systems (T4SSs), and then adapted for various purposes. These T4SSs represent remarkable molecular transporter machines, often associated with an extracellular pilus structure present in many bacteria, which are commonly composed of multiple structural proteins spanning the inner and outer membranes. By definition, these T4SSs exhibit central functions mediated through the contact-dependent conjugative transfer of mobile DNA elements, the contact-independent release and uptake of DNA into and from the extracellular environment as well as the secretion of effector proteins in mammalian host target cells. In recent years, numerous features on the molecular functionality of these T4SSs were disclosed. H. pylori encodes up to four T4SSs on its chromosome, namely the Cag T4SS present in the cag pathogenicity island (cagPAI), the ComB system, as well as the Tfs3 and Tfs4 T4SSs, some of which exhibit unique T4SS functions. The Cag T4SS facilitates the delivery of the CagA effector protein and pro-inflammatory signal transduction through translocated ADP-heptose and chromosomal DNA, while various structural pilus proteins can target host cell receptors such as integrins or TLR5. The ComB apparatus mediates the import of free DNA from the extracellular milieu, whereas Tfs3 may accomplish the secretion or translocation of effector protein CtkA. Both Tfs3 and Tfs4 are furthermore presumed to act as conjugative DNA transfer machineries due to the presence of tyrosine recombinases with cognate recognition sequences, conjugational relaxases, and potential origins of transfer (oriT) found within the tfs3 and tfs4 genome islands. In addition, some extrachromosomal plasmids, transposons and phages have been discovered in multiple H. pylori isolates. The genetic exchange mediated by DNA mobilization events of chromosomal genes and plasmids combined with recombination events could account for much of the genetic diversity found in H. pylori. In this review, we highlight our current knowledge on the four T4SSs and the involved mechanisms with consequences for H. pylori adaptation to the hostile environment in the human stomach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...